Гайнуллин Иван Камилевич

Гайнуллин Иван Камилевич

доктор физико-математических наук, доцент

Комн. Ц-62

e-mail: Ivan.Gainullin@physics.msu.ru

Профиль в системе ИСТИНА

Дата рождения:

20 сентября 1979 г.

И.К. Гайнуллин является признанным специалистом в области высокопроизводительных вычислений и суперкомпьютерного моделирования электронных и атомных процессов в наносистемах. Автор более 60 статей в рецензируемых журналах, включая публикации в ведущих журналах – Успехи Физических Наук, Physical Review, Computer Science Communications и т.д. Индекс Хирша - 13. Проводит совместные исследования с ведущими российскими и мировыми учеными. Регулярно выступает на профильных конференциях. Читает курсы лекций «Неупругое взаимодействие ионов с поверхностью» и «Численные методы и технологии компьютерного моделирования задач физической электроники». Под руководством И.К. Гайнуллина защищено 12 дипломных работ и одна кандидатская диссертация.

Образование, ученые степени и звания:

СУНЦ МГУ, 1996 г.

Физический факультет МГУ, кафедра физической электроники,2002 г.

Кандидат физико-математических наук, 2005 г. Диссертация «Расчет электронного обмена между атомной частицей и системами пониженной размерности»

Доцент по кафедре, 2013 г.

Доктор физико-математических наук, 2023 г. Диссертация «Трехмерный неадиабатический подход к расчетно-теоретическому описанию электронного обмена ионных пучков с металлическими поверхностями».

Численные методики и технологии:

Метод конечных разностей, метод конечных элементов, метод Галеркина, метод неравновесных функций Грина (NEGF), параллельное программирование (Linux, Threads, TBB, OpenMP, MPI, GPU, Cuda), теория функционала плотности (DFT, VASP, Gaussian, SIESTA), молекулярная динамика (LAMMPS), TCAD, SPICE, MatLab, COMSOL.

Основные публикации:

Руководство проектами и грантами:

Основные научные результаты

рис1

Комплекс программ для трехмерного моделирования электронного обмена

Создан комплекс программ для трехмерного моделирования электронного обмена, обладающий высокой производительностью за счет специально разработанной гибридной численной схемы и эффективного распараллеливания расчетов на графических вычислителях. Производительность комплекса программ в несколько раз превосходит существующие аналоги, а поддерживаемый размер расчётной области до 105 нм3 делает его уникальным для моделирования задач электронного обмена.

рис2 рис3

Трехмерные эффекты при электронном обмене между атомными частицами и наносистемами

Изучены особенности электронного обмена атомных частиц с наносистемами. Показано, что общей закономерностью перехода электрона с атомной частицы в наносистему является иерархическая последовательность заполнения дискретных уровней электрона в наносистеме в перпендикулярном и параллельном поверхности направлениях. Трехмерное рассмотрение задачи позволяет получить реалистичное распределение электронной плотности и наблюдать квантовые вихри.

Показано, что эффективность электронного обмена с наносистемами зависит от ее размеров (квантово-размерный эффект) и латерального положения атомной частицы. Квантово-размерный эффект объясняется выполнением резонансных условий между энергетическим уровнем атомной частицы и дискретным уровнем энергии электрона в наносистеме. При выполнении резонансных условий эффективность электронного обмена с наносистемами увеличивается до 5 раз по сравнению со случаем массивного образца.

рис4

Анизотропия распространения электрона

рис5

Обнаружен эффект анизотропии распространения электрона вдоль поверхности, важный для количественного описания экспериментальных данных. На примере поверхности Cu(110) показано, что вдоль направления <001> волновой пакет электрона H- распространяется примерно в 2 раза быстрее, чем вдоль ортогонального направления.

Благодаря учету трехмерного эффекта анизотропии распространения электрона, впервые было дано количественное объяснение зависимости вероятности формирования H- от азимутального угла при скользящем рассеянии на поверхности Cu(110).

рис6

Немонотонная зависимость электронного обмена

Дано количественное объяснение немонотонной энергетической зависимости вероятности нейтрализации ионов щелочных металлов (Li+/Na+) при рассеянии на поверхностях с большой работой выхода [Cu(111) и Au(111)] основанное на конкуренции между двумя факторами: 1) уменьшение времени взаимодействия с ростом энергии иона, что уменьшает вероятность нейтрализации; 2) уменьшения расстояния zf, что увеличивает вероятность нейтрализации.

рис7
рис8 рис9

Нейтрализация на нанокластерах

Дано количественное объяснение сильного увеличения вероятности нейтрализации ионов щелочных металлов при рассеянии на нанокластерах золота по сравнению со случаем макроскопического образца. Эффект объясняется изменением энергетического положения иона за счет взаимодействия с зарядом изображения, которое заметно отличается в случае нанокластера и плоской поверхности. Так вероятность нейтрализации Na+ возрастает с 3% при рассеянии на массивном образце Au до 50% при рассеянии на нанокластере Au радиусом 1 нм.

Трехмерный неадиабатический подход к моделированию электронного обмена

На основе усовершенствованной физической модели и физической методики трехмерного моделирования был разработан трехмерный неадиабатический подход к расчетно-теоретическому описанию электронного обмена, которой был применен к расчету 18 экспериментов, отражающих различные аспекты электронного обмена. Точность расчетов была повышена в ~2,5 раза по сравнению с ранее применяемыми адиабатическими подходами, что позволило количественно (с точностью 10%) описывать экспериментальные данные.

Продемонстрировано, что при анализе состава металлических поверхностей с помощь рассеяния ионов щелочных металлов, широко используемый метод эталонных образцов приводит к существенным (кратным) ошибкам, если не учитывать нейтрализацию ионов. Например, в работе [ Ho C. S. et al. The Journal of Physical Chemistry A. – 2013. – V. 117. – N. 46. – P. 11684-11694. ] в 3 раза завышена концентрация Zn на поверхности Pt(111). Показано, что для учета нейтрализации ионов необходимо корректировать данные, полученные методом эталонных образцов, либо рассчитывать элементную чувствительность. Вероятность нейтрализации ионов можно оценить из имеющихся экспериментальных данных, либо рассчитать с помощью трехмерного неадиабатического подхода, созданного в рамках диссертационного исследования. Прямой расчет элементной чувствительности позволяет избежать дополнительных измерений на эталонных образцах.

рис10

Повышение эффективности источников отрицательных ионов

Предсказана возможность повышения эффективности источников отрицательных ионов за счет использования эффекта параллельной скорости. Показано, что конфигурация источника отрицательных ионов, которая реализует столкновение частиц водорода с преобразующей поверхностью и выход из нее H- под наклонным углом, может увеличить вероятность образования ионов H- до 30%.

TCAD моделирование электрофизических характеристик полупроводниковых приборов

рис11

Для моделирования электрофизических характеристик отдельных полупроводниковых приборов был разработан прототип оригинального программного кода решения уравнений диффузионно-дрейфовой модели. Проведена качественная верификация разработанного программного кода. При нулевом напряжении на затворе, канал между истоком и стоком закрыт, а ток практически отсутствует. При увеличении напряжения на затворе увеличивается концентрация носителей заряда между истоком и стоком, т.е. канал открывается, что приводит к росту тока.

рис12 рис13

Квантовый транспорт и влияние атомной структуры

Моделирование баллистического транспорта в нанотранзисторе с учетом атомных дефектов его кристаллической структуры проводилось с помощью оригинального программного кода, реализующего трехмерную методику неравновесных функций Грина (non-equilibrium Green's functions – NEGF) в которой атомная структура наносистемы и электростатический потенциал учитываются с помощью теории функционала плотности (Density Functional Theory – DFT).

Было получено, что ВАХ нанотранзистора с идеальной и дефектной кристаллической структурой существенно отличаются друг от друга. Даже удаление относительно небольшого числа атомов ведет к существенной деградации ВАХ. Это объясняется тем, что при удалении атомов полностью или частично блокируются некоторые каналы проводимости.

рис14